日本综合久久_特级丰满少妇一级aaaa爱毛片_91在线视频观看_久久999免费视频_99精品热播_黄色片地址

課程目錄: 會(huì)計(jì)學(xué)數(shù)據(jù)分析基礎(chǔ) II培訓(xùn)

4401 人關(guān)注
(78637/99817)
課程大綱:

會(huì)計(jì)學(xué)數(shù)據(jù)分析基礎(chǔ) II培訓(xùn)

 

 

Course Orientation

You will become familiar with the course, your classmates,

and our learning environment. The orientation will also help you obtain the technical skills required for the course.

Module 1: Introduction to Machine Learning

This module provides the basis for the rest of the course by introducing the basic concepts behind machine learning,

and, specifically, how to perform machine learning by using Python and the scikit learn machine learning module.

First, you will learn how machine learning and artificial intelligence are disrupting businesses.

Next, you will learn about the basic types of machine learning and how to leverage these algorithms in a Python script.

Third, you will learn how linear regression can be considered a machine learning problem with parameters that must be determined

computationally by minimizing a cost function. Finally, you will learn about neighbor-based algorithms,

including the k-nearest neighbor algorithm, which can be used for both classification and regression tasks.

 

Module 2: Fundamental Algorithms

This module introduces several of the most important machine learning algorithms: logistic regression, decision trees,

and support vector machine. Of these three algorithms, the first, logistic regression,

is a classification algorithm (despite its name). The other two,

however, can be used for either classification or regression tasks. Thus,

this module will dive deeper into the concept of machine classification,

where algorithms learn from existing, labeled data to classify new,

unseen data into specific categories; and, the concept of machine regression,

where algorithms learn a model from data to make predictions for new,

unseen data. While these algorithms all differ in their mathematical underpinnings,

they are often used for classifying numerical, text, and image data or performing regression in a variety of domains.

This module will also review different techniques for

quantifying the performance of a classification and regression algorithms and how to deal with imbalanced training data.

 

Module 3: Practical Concepts in Machine Learning

 

This module introduces several important and practical concepts in machine learning.

First, you will learn about the challenges inherent in applying data analytics (and machine learning in particular) to real world data sets.

This also introduces several methodologies that you may encounter in the future that dictate how to approach,

tackle, and deploy data analytic solutions.

Next, you will learn about a powerful technique to combine the predictions

from many weak learners to make a better prediction via a process known as ensemble learning.

Specifically, this module will introduce two of the most popular ensemble learning

techniques: bagging and boosting and demonstrate how to employ them in a Python data

analytics script. Finally, the concept of a machine learning pipeline is introduced,

which encapsulates the process of creating, deploying, and reusing machine learning models.

Module 4: Overfitting & Regularization

 

This module introduces the concept of regularization, problems it can cause in machine learning analyses,

and techniques to overcome it. First, the basic concept of overfitting is presented along with ways to identify its occurrence. Next,

the technique of cross-validation is introduced,

which can mitigate the likelihood that overfitting can occur. Next, the use of cross-validation to identify the optimal parameters for a machine

learning algorithm trained on a given data set is presented. Finally, the concept of regularization,

where an additional penalty term is applied when determining the best machine learning model parameters,

is introduced and demonstrated for different regression and classification algorithms.

Module 5: Fundamental Probabilistic Algorithms

This module starts by discussing practical machine learning workflows that are deployed in production environments,

which emphasizes the big picture view of machine learning.

Next this module introduces two additional fundamental algorithms: naive Bayes and Gaussian

Processes. These algorithms both have foundations in probability theory but operate under very different

assumptions. Naive Bayes is generally used for classification tasks, while Gaussian Processes are generally used for regression tasks.

This module also discusses practical issues in constructing machine learning workflows.

 

Module 6: Feature Engineering

 

This module introduces an important concept in machine learning,

the selection of the actual features that will be used by a machine learning

algorithm. Along with data cleaning, this step in the data analytics process is extremely important,

yet it is often overlooked as a method for improving the overall performance of an analysis.

This module beings with a discussion of ethics in machine learning,

in large part because the selection of features can have (sometimes) non-obvious impacts on the final performance of an algorithm.

This can be important when machine learning is applied to data in a regulated industry or when the improper application of an algorithm

might lead to discrimination. The rest of this module introduces different techniques for either selecting the best features in a data set,

 

Module 7: Introduction to Clustering

This module introduces clustering, where data points are assigned to larger groups of points based on some specific property,

such as spatial distance or the local density of points. While humans often find clusters visually with ease in given data sets, computationally the problem is more challenging.

This module starts by exploring the basic ideas behind

this unsupervised learning technique, as well as different areas in which clustering can be used by businesses. Next,

one of the most popular clustering techniques, K-means, is introduced. Next the density-based DB-SCAN technique is introduced. This module

concludes by introducing the mixture models technique for probabilistically assigning points to clusters.

or the construction of new features from the existing set of features.

Module 8: Introduction to Anomaly Detection

This module introduces the concept of an anomaly, or outlier,

and different techniques for identifying these unusual data points. First,

the general concept of an anomaly is discussed and demonstrated in the business community via the detection of fraud,

which in general should be an anomaly when compared to normal customers or operations.

Next, statistical techniques for identifying outliers are introduced, which often involve simple

descriptive statistics that can highlight data that are sufficiently far from the norm for a given data set. Finally,

machine learning techniques are reviewed that can either classify outliers or identify

points in low density (or outside normal clusters) areas as potential outliers.

 

主站蜘蛛池模板: 国产精品久久久久婷婷二区次 | 亚洲欧美日韩精品久久亚洲区 | 欧美一区二区三区在线 | 免费观看一级毛片 | 欧美一区二区三区 | 日韩av电影院 | 久久精品视频在线播放 | 久久久久久久一级 | 精品日韩欧美一区二区 | 日韩在线欧美 | 毛片网站在线观看 | 欧美精品一区二区在线观看 | 欧美日韩精品一区二区三区四区 | 中文字幕中文字幕 | 日韩无| 午夜播放器在线观看 | 国产欧美日韩精品一区二区三区 | 草久在线 | 国产真实精品久久二三区 | 精品国产不卡一区二区三区 | 久久日韩精品一区二区三区 | 中国大陆高清aⅴ毛片 | 久久亚洲天堂 | 欧美日韩亚洲一区 | 狠狠草视频 | 日韩中文字幕在线观看 | 中文字幕一区二区三区精彩视频 | 久久久久久久久久一区二区 | 农村真人裸体丰满少妇毛片 | 亚洲高清一区二区三区 | 日韩成人在线视频 | 男女下面一进一出网站 | 一级黄色短片 | 999视频| 国产精品视频一区二区三区 | 伊人久操 | 欧美jizzhd精品欧美巨大免费 | 久久99这里只有精品 | 福利一区在线观看 | 精品成人免费视频 | 中文字幕免费视频 |